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ABSTRACT

This report describes the development of a method for numerically computing the
inviscid transonic flow field over an airfoil with a leading-edge slat or a trailing-edge flap.
The approach is to solve the full inviscid irrotational flow equations about two-element air-
ioil systems. The methodology consists of the deveiopment of a suitable computational
plane and grid system through the application of a series of conformal mappings. The
appropriate set of equations and boundary conditions are derived in terms of a smoothly
varying, single-valued reduced potential function through analytic removal of all singularities
in the computational domain. A stable and accurate relaxation procedure is established for
the numerical solution of the governing equations. The method is applied to a variety of
transonic supercritical two-element airfoil configurations. Results are presented depicting
1e surface pressure distribution, streamline patterns in the physical and computational do-

mnains, and Mach number contours.




TABLE OF CONTENTS

Section Page

Intraduetlon c o Wil v 6wl e e s e e el e el el e e e e e e et el i et 1
MapDIngs oo o il e e e e e el e et e e el e e e 3

Mathematical Formulation. « ¢« « ¢« ¢ . ¢« ¢ ¢ ¢ o ¢ o ¢ o o s o o o o 13

- W N -

Numerical Formulation .« & & s s 5 o i sl o sl s e s s sl Be s o ow 17

R SRS o el e e A e P ORI ORI 0 S ] e P el e S 22

()]

B B Ao T e e i o ol Bl o e B D e b o b T s O e e e 36

N o

Referenees o o o o o el e 1o e o S O e S e e G e 3

Appendix - Determination of the Z3—2Z4 Mapping Coefficients . . . . . . . 38




LIST OF ILLUSTRATIONS

Figure _P_a;i(i
1  Sequence of Conformal Mappings « . o o o o o s o o & & s s o o 6 5 o e 4
2 G o put At om A OIS e e 9
Sl ant R on arni R SR e e 10
4 Coordinate Grid-Physical Plane NACA 23012 Airfoil/2H flap . . . . . . . 11
5 Coordinate Grid-Physical Plane Clark Y Airfoil/307 Maxwell Slat . . . . . 12

6 Computed Surface Pressure Distribution-NACA 23012 Airfoil/2H Flap,
= By G e e I e o it el el g et e 23

-1

Computed Streamlines-Annular Domain NACA 23012 Airfoil/2H Flap,
I e R B e R e e o R T 24

Computed Streamlines-Physical Plane NACA 23012 Airfoil/2H Flap,

Mo = 0.5, @ =4° . ., . : 25

Computed Surface Pressure Distribution-Clark Y Airfoil/30% Maxwell Slat,

Mo=0.6, @ =6 o & & ss o 25
10 Computed Streamlines-Annular Domain Clark Y Airfoil/307% Maxwell Slat,

Mg =006, (G SIOE & aie i o o tem b R R R e s e 27
11 Computed Streamlines-Physical Plane Clark Y Airfoil/307 Maxwell Slat,

Mis =005 65 (=S G e S R e S e e e L e e % e W e 27
12 Computed Surface Pressure Distribution-Modified NACA 64A008 Airfoil/

e o e O R R A S W 28
i3 Computed Streamlines-Physical Domain Modified NACA 64A008 Airfoil/

4 R o O I T LNV S 29
14  Computed Surface Pressure Distribution- Modified NACA 64A009 Airfoil/

Sk, (Ve =008, [Chm e i it e e L el o L ™l e % e W 30
15 Mach Number Contours-Modified NACA 64A009 Airfoil/Slat,

I o R A T I o e 31
16 Mach Number Contours-NACA 0012 Airfoil and Slat, Mew=0.6, a=4 . . . 32
17 Computed Surface Pressure Distribution-NACA 0012 Airfoil and Slat,

Ma=0.6, =4, o 5 & & o6 & & % o's 8w o 5 % 6 @ B E & 5w m & 33
18 Computed Surface Pressure Distribution-NACA 64A406 Airfoil/7.8A Slat,

Mo = QubhOy =4 5 o ¢ i s 3 v % % om e s W e e N A A e s 34
19  Mach Number Contours-NACA 64A406 Airfoil/7. 8A Slat,

M= 0649 Cad” 5 5 ¢ o .68 5 2 o8 & & % % 5w 5 w8 S 6w s 35




LIST OF SYMBOLS

a local speed of sound

E, defined by Eq. (23)

E, defined by Eq. (24)

{ defined by Eq. (15)

G reduced potential

H metric of conformal mappings

H reduced metric

i index for difference expressions, X direction

j index for difference expressions, Y direction

k, ki, ky mapping constants, Eq. (13)

L defined by Eq. (22)

M Mach number

N local coordinate normal to Streamlines computational domain

G magnitude of velocity

r radial direction in annular domain

Ty radius of inner ring corresponding to secondary airfoil in annular domain

P radius of point of infinity in annular domain

S local streamwise coordinate, computational domain velocity component in r

direction

u velocity component in r direction

Wy defined by Eq. (27)

% velocity component in 6 direction i

Vi defined by Eq. (28) i’«

X stretched 6 coordinate-computational domain ;
a

Y stretched r coordinate-computational domain

Z, complex physical domain

lo=2Z; intermediate mapped domains

6

Zg complex annular domain, = re'




‘bl
dy
By
Superscripts

o

Subscripts

i

angle of attack

defined by Eq. (18)

ratio of specific heats

circulation constants for main and secondary airfoils
=G; -GS

mesh spacing, X direction

mesh spacing, Y direction

azimuthal direction in annular domain

complete potential function

free-stream contribution to potential

circulatory flow contribution to potential

additional circulatory flow contribution to potential

old value in iterative relaxation process

derivative of stretching functions with respect to their arguments

index for difference expression in X direction

index for difference expression in Y direction

free stream quantity




1. INTRODUCTION

In order for an aircraft to maneuver effectively in the transonic speed range, its wing
must generate high lift coefficients without incurring excessive drag or buffeting. The re-

cent development of supercritical wings can enable a designer to meet this specification.
However, this requirement will often degrade the aircraft’s performance at cruising speeds
with larger than optimal drag coefficients. The implementation of high lift devices at tran-
sonic speeds offers the possibility of greatly enhancing the maneuvering capabilities of mod-
ern aircraft without compromising their cruising efficiency. This possibility has been
proven in the last few years by the installation of slats on the I'-4 and the positive test of a
slatted wing on the I'-14 aircraft. The performance of thec aircraft in managing climbs
and turns at transonic speeds was remarkably improved by the presence of the slats, even

though these configurations have not been shown to be optimal by any means.

The aerodynamic designer currently lacks an analytical tool to design, or even analyze,
transonic airfoils with high lift devices. Furthermore, the paucity of experimental data cur-
rently makes it difficult to determine what can be achieved with these maneuvering devices.
Also, the experimental gathering of data on such configurations would be tremendously ex-
pensive in light of the number of configurations that would need to be tested and the high
speeds and Reynolds numbers required in a wind tunne: test. A theoretical tool for the anal-
ysis of the transonic flow over a two-element airfoil system would be a first valuable step in
aiding the designer in his task by cutting down on the number of configurations to be tested

and providing insight into the flow phenomena that are present at high speeds.

This report describes the development of a method for numerically computing the invis-
cid transonic flow over an airfoil with a leading~edge slat or a trailing-edge flap. In general,
these flow fields are difficult to obtain analytically because of the complicated geometry of
the multiply connected domain. Small disturbance approximations (such as those used for
this problem in Ret. 1) do not appear to be adequate since the interaction of the flow between

the airfoils will provide large perturbations to the flow lield.

In recent years the application of mixed-flow relaxation techniques, introduced by Mur-

man and Cole (Ref, 2), has made possible the numerical computation of inviscid transonic




flows over a variety of geometrical shapes in both two and three dimensions. These methods
are generally based on the assumption of irrotational flow and solve either the full potential
equation or an appropriate form of the small disturbance equation. For two-dimensional

flows in particular, accurate and efficient solutions to the full potential equation have been
obtained for transonic flows over airfoil sections (Refs. 3, 4), over axisymmetric bodies (Refs.

3, 6), and over nacelles (Refs. 7, 8).

In this report these relaxation techniques are applied to determine the flow about an air-
foil with a slat or a flap at transonic speeds. The approach is to solve the full inviscid, ir-
rotational flow equations about two-element airfoil systems. The methodology cousists of
the 1) development of a suitable computational plane and grid system, 2) evaluation of an ap-
propriate set of governing inviscid equations and boundary conditions in terms of smoothly
varying, single-valued functions in the computational domain, and 3) establishment of a stable

and accurate numerical procedure for the solution of the governing equations.

An abbreviated version of this analysis was presented at an International Symposium
(Ref. 9) and this report is designed to provide the details of the method. Arlinger (Ref. 10)

has recently developed independently a similar inviscid analysis of this problem.

The method will provide solid groundwork for the development of a computational tool
that includes viscous corrections, and one that actually designs two-element airfoil systems:

a numerical computation that generates airfoil ordinates when a desired pressure distribu-

tion is specified over part or the whole of the configuration.




2. MAPPINGS

A crucial step in the development of a finite difference method o compute flows over
complicated geometries is to develop a suitable grid system. It is highly desirable to have
the geometric contours aligned with a coordinate line in order to avoid interpolations and ex-
trapolations in applying the surface boundary conditions. It is also convenient for external
flow problems to map the infinite physical domain to a finite computational space in order to
apply accurately the far-field boundary conditions. Furthermore, the mappings should con-
centrate grid lines in regions of steep flow gradients such as airfoil leading and trailing

edges and in the slot formed between the main airfoil ~nd the slat or flap.

In our approach, we use analytic and numerical conformal mapping methods to trans-
form the infinite domain external to the two-element airfoil system to the annular region be-
tween two concentric circular rings. The outer ring corresponds to the main airfoil surtace
and the inner ring to the secondary airfoil surface (flap or slat). Infinity in the physical
plane is mapped to a single point with the circular annulus in the computationa! domain. The
mapping method follows from the work of Ives (Ref. 11) and utilizes a sequence of five con-
formal transformations, three analytic and two numerical. We briefly summarize below the

details of the mapping as they have been used in our approach.

The first step consists of mapping the main airfoil to a near circle using a von Karman-
Trefftz transformation, as illustrated in Iligs. 1a and 1b. Denoting the physical plane as
Z = xqy +1y;, the first mapped plane Z, becomes

Z =8 (21 - Zl'I‘)”Kl
Z2+S \Zi = ZiN

(1)
where Z;t is the location of the trailing edge, Zx is located inside the airfoil at a point mid=-
way between the nose and its center of curvature, ky = 2 = 7¢/7 with 7; being the included
trailing edge angle of the main airfoil and S = (Z;1 = Zx)/21;.

The second step is a Theodorsen-Garrick transformation utilizing fast Fourier trans-

forms to map the main airfoil near circle to an exact circle. The next mapped plane, Z.,

illustrated in Fig., 1c i
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where Z,, is the location of the centroid of the near circular image of the main airfoil in the

Z, plane and A; and B; are constants which are determined iteratively as discussed in Ref. 11,

The third step of the mapping is an analytic transformation of the secondary airfoil to a

|

near circle, which keeps the image of the main airfoil a circle (but of different radius). The
transformation to the Z; plane is written as |

(Z4 = Zy1) (Z4 = Zg1) [(ZL) — Zst) (Zs — ZL‘T)]I/KZ ‘

(Z4 — Zan) (Za — Zax)  L(Zs — Zon) (Zs — Zan) W
where
Zyr = 1/Zsr ?
Zyn = 1/Zyy
Zyr = v3/Zst

Zyn = 1Y/ Ly
Ky =2 —Ty/m
and rg is the radius of the circle corresponding to the main airfoil in the Z; plane and 7, is
the included trailing edge angle of the secondary airfoil. In a manner similar to the Z; = Z,
mapping, the singular points Zjt and Zgy are placed at the trailing edge and midway between
the nose and its center of curvature as illustrated in Fig. 1d. The unknown constants in Eq.
(3) are Zyr, Zyx and rg. Our procedure for the evaluation of these constants ditfers from

Ives (Ref. 11) and is detailed in the appendix.

The fourth step of the mapping consists of using a bilinear transformation to place the
new circular image of the secondary airfoil at the center of main airfoil circle as illustrated
in Fig. le. The mapping takes the form

Zs5= Ll (1)

Z4 + C

where the procedure for computing the constants A, B, and C is found in Ref, 11,

The fifth transformation of the two concentric shapes to two circular rings is performed

through a second application of a Theodorsen-Garrick mapping of the form
\. - S o o B
Zs= Zg CX])"II)(, + X | (= Cy + iDy)(re Zg) + (C, + iDy ) (ry/ Zg)’ l\ (5)
j=0 J

i6

As shown in Fig. 1f, taking Z; = re'’, the main airfoil lies exterior to the circle r = 1, the

secondary airfoil lies interior to r = rgy and the point of infinity is at r = ro, € - 0,

-
{




A further set of transformations X = X(6) and Y = Y (r) is used to obtain the final com-

putational domain. It is convenient to have the point of infinity r = re. located at a fixed grid
point in the computational domain, since boundary values must be applied there. Hence, we
take Y (r«) = 1/2 and define a parabolic transformation by
r=ry=(A1Y + Ay)Y (6)

where

Aj=2(1 = 2re+ry)

Ay=4dr, —3rg =1
The main airfoil is located at Y = 1, the secondary airfoil at Y = 0, and the point at infinity

isat Y=1/2,

In the azimuthal direction we introduce a mapping X = X (6) in order to give some con-
trol on the concentration of grid lines and to locate the trailing edges at grid points in the
computational space. This latter requirement will allow an accurate imposition of the Kutta
condition at the trailing edges. The mapping consists of two steps; first to produce desired
mesh spacings

6=E sin ¢+ F sin 20 + G (7)
where the constants E, F, G are arbitrary, subjected to the constraints
E<4/3 F< 1/6

The final step of locating each trailing edge and the point of infinity at grid lines is obtained

through
2 [¢) (6) — ¢>0] = X + B; sin 27X + By (cos 27X = 1) (8)
where
Woaa 1 (Zl— X1) sin X2 3 ((.‘_’z -~ Xz) sin X4
1 2 | sin X sinrr(X1 - Xz) sin X3 sin n(Xz - X1§
A 1 (61 = X1) cos X2 " (P2 = Xp) cos 1Xs
2 2 | sin X1 sin 7(Xi = Xg)  sin X sin 7(X2 = Xy)

and “T’l = 27 [(.‘) (91‘1) - (,")0], (.T)z = ZTY[(‘) (0T2) - (,')0], o= ©(0) and 61, and 61, are the trailing
edge locations of the main and secondary airfoils, respectively. The values X; and X; cor-
respond to fixed mesh points for the trailing edges and X = 0 corresponds to the location in

the 6 plane (6 = 0) of the point of infinity.




The final computational domain is sketched in Fig. 2. In this plane a uniform grid pro-
duces the mesh distribution in the annular domain shown in Fig, 3 and in the physical domain
shown in Figs. 4 and 5 for typical flap and slat configurations. The mapping produces a
grid where each airfoil surface is a coordinate line, the trailing edges occur on mesh points
and with a high density of grid lines in the slot region and near all stagnation points, Al-
though the mapping procedure is quite complicated, our computer program to calculate the

coeflicients of all the terms generally requires less than 10 seconds on an 1BM 370/16s,
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Fig. 4 Coordinate Grid — Physical Plane NACA 23012 Airfoil/2H Flap




Fig. 5 Coordinate Grid — Physical Plane Clark Y Airfoil/30% Maxwell Slat




3. MATHEMATICAL FORMULATION

The governing equations for the inviscid, irrotational, compressible flow about a two-
element airfoil system are written in the annular domain Zg = re!? using the metric H of the
conformal mappings, Egs. (1)=(5), in terms of a potential function ¢, as

2uv

@ - Ve, - —

9 1
b + % ~ uz)';,d)% ()
(,'3 Z)l (,2 2) H _Lll =0
a° U l‘<1>‘.'\~u vH, rle-

and

e \_11_ ) Q_‘)'_l’. (1 —ul =) 10)

where

H

iﬁ‘
dZ
and M, is the free stream Mach number and ¥ the ratio of specific heats. The boundary con=
dition on the surface of the airtoils is

$.=0 on r=rg and r=1 (11)
At the airfoil trailing edges, since the metric H goes to zero, the Kutta condition that re-
quires there be no flow around the trailing edges. may be expressed as

¢, = 0 at both trailing edges. (12)

Singularities in the above formulation are seen to arise for several reasons. First, the

metric of the mapping becomes unbounded at infinity (r=r. 0= U) . It can be shown that
near infinity

(1’/,1 Kk ;
Sty fmsmmaSSemsy QI8 Lig =X (13
dZg (74., - l‘;:)” o o =

ik
» & . - 2 r s
and K is a known complex constant which can be taken to be K = ke “. The metric may then

be regularized by




H :I.:.—‘l' (14)

where
2

f= l Zo— Lol = ré = 2r.r cos 6 - ry cos6 (15)

and H is a smooth bounded function which goes to unity at Z, = r_.

Next, the potential function itself becomes unbounded and multivalued near the point of
infinity in the computational domain. One contribution to the singular potential comes from
the behavior of the uniform flow near infinity, which can be shown to be of the form, for

Zs— Tre

— '3"1 ¢
®,(r, 6) = Real 3;%1—2 == 1}1 [rcos(@ a —ky) = r.cosl@ — k)] (16)

where « is the angle of attack of the free stream velocity vector.

A second contribution to the singular potential comes from the multivalued nature of the
circulatory flow near infinity in the annular domain. In taking a closed circuit about 7 s
the potential must jump by 27 times the circulation about each airfoil. The solution for the
circulatory flow potential valid near infinity is found as a solution to the Prandtl-Glauert
equations (see Ref. 12) and is transformed to the computation dom:uin as

&,(r, 0) = — (I‘1 : P:)Lanxl"[v 1 — M5 tan ,.1] (17)
where

/r sin 6 > (18)

3 =Ky = T — ;n"(
=y =@t & E Cos 8 — T,

and I'y and T, are equal to 27 times the circulation constants about the main and secondary

airfoils, respectively.

To obtain a single-valued reduced potential, another term &; must be added to ¢, so that
any closed contours about individual airfoils will produce the required circulation jump.
This is obtained through a term

by ==T,0 (19)

A reduced potential function G(r, ) may now be defined which remains bounded and
single-valued throughout the entire annular domain as

(;(1" 6) =& - d)f s 'l’-_v o d’;; l.:“)




The governing equation for the reduced potential is then obtained by introducing kEgs.
(14)—(20) into Eq. (9), whereby

9

(a® = VDG - % f [Uw = —11:((;9 - I‘Q)J 21)

gL ook L, : 2 . oV (o B
t (Zi - 1 )1‘<1‘(’96 t Lxr) ‘ (U t Vv )1\1 ("“’I‘ t r“f,) L =20

and
duyv r,
L= - —;V- [(1‘ ~r,cos 0) (G, = Ty)+rr, sin G(}r]
| _ (22)
| Py 9 i 3 : S
‘ + 2 ~ %) {(r = T,.cos )G, = '1—*‘ sin (G, — I:)]
By bo(2 . 2 : ORI P SN
—(I‘1 ‘ I‘.J)—l-_— 'z(u“ -V )(r - r,cos 6)r, sin 6 - ..’.U\'(l — 21, sin“6)
- E,[a¥ ~ (r,v sin 8 + rou cos 6 — Ul‘)z:“'
where
pie k= N e
‘17 1 =1\ sin?g -
e
B 1 — ML, sin‘g (24)
and f and B are defined in Eqs. (15) and (18), respectively. The radial and circumferential
velocity components, v and u become
. ¢ = (Ty + TYEr, sin 8 + v/ (25)
= ﬁl{" e { o)lql. SN \1\‘ Zo
10 Shi 7 : e i -
u==—:=(G ~T,)=(T; + T,)E(r, cos 6 — 1) -y (26)
1”\1 'I‘ i 7 : &1
i where
;
vy = 1 [® cos(8 - @ = k) = 2rr. cos(@ = k;) - ri cos(6 —a k)] (27)
]\ 9 . B 9 . 1
uy = TL [r? sin(6 + @ = k) ~ 2rr, sin(@ ~ k,) = ri sin(6 ~a k)| (28)

The boundary condition of the vanishing of normal velocity on the surface of the airfoils,

Eq. (11) becomes

('.x_:'l,[(r1 I'))E r, sin 9*\'1] at r=1rg and r =1 (29)

The Kutta condition, Eq. (12) becomes
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¢ ‘
I'yEy(r, cos 8 — 1) + I‘:[‘; + By (r, cos 6 — r)J =70 ‘Y (30)

at each trailing edge. This gives to two linear expressions for I'y and T';, which can be solved

at each step in the iterative numerical solution.

An additional boundary condition must be enforced at the point representing infinity. The
entire solution there is given by the sum of the free stream and circulatory flows. No addi-
tional velocities must be generated by reduced potential G. So, in effect, G must be a con~
stant at infinity and, therefore, a constant in all directions at r = r,, 6 = 0. For conve-

nience this constant is chosen as zero.

Solutions to the boundary value problem comprising Egs. (10), (21)=(30), can be obtained
by iteration and the numerical scheme will be described in the following section. A start-
ing point for the iteration process is provided by Legally’s solution (Ref. 13) for the incom-
pressible flow over two circular cylinders, which in terms of the reduced potential G(r, 6)

may be writte. as

1 o
&
-1 (k=) =i (koma) ez T S
Glr, 8 = Real {= ko e 28 St | vzl | reZe B
W ERE G5 0 T L=~ T,Zgl ks
Ep g S
L 2 Zg oy
- L 1 —2 e
el -—t= (31)
‘j:; T, e T 23 = .41 j
7‘6 £

- i(Ty + Ty) |- log( - r.2z;) - E_;lo}_:

= (] - 71 !) (] = ], 1~.’!> \




4. NUMERICAL FORMULATION

The Neumann boundary value problem formulated in the preceding sections is solved
numerically using the ideas and techniques developed for mixed subsonic and supersonic
flows about a single airfoil. The reduced potential equation, Eq. (21), is solved by a suc-
cessive column-relaxation algorithm utilizine type-dependent differencing originated by
Murman and Cole (Ref. 2). However, the sequences of mappings produces a computational
plane in which the coordinate lines are not aligned with the streamwise direction. Jameson’s
technique (Ref. 14) for developing a coordinate invariant or “rotated” difference scheme

proves valuable in the numerical formulation of this problem.

The solution of the flow field is obtained by replacing the potential equation with a finite-
difference analog at each point in the grid. The resulting set of difference equations is
solved by iteration, a process which can be regarded as a sequence ol steps in an artificial
time coordinate frame. During each iteration the updating of an initial potential field is ac-
complished simultaneously at a number of points on the same column (X = constant) and
sweeping, column by column, through the computational grid. It is imperative that the flow
field be swept in a direction which is no more than 90° from the streamwise direction in or-
der to retain the proper domain of dependence everywhere. A scheme which has proved
suitable in this problem has been to divide the flow field in two by the coordinate ring pass-
ing through the infinity point (r = r, or Y = },‘ Each half of the total field can then be con-
sidered to surround a single element and is swept from the leading edge to the trailing edge
of the airfoil along one surface, and then along the other as illustrated in I'igs. 2 and 3. A
column of points extending from the surface to the middle coordinate ring is thus updated at
each pass. At the end of each sweep the Kutta condition at each airfoil trailing edge is en-
forced by sulving for the circulation values, I'y and T'y, which satisty the difference equa-

tions corresponding to Eq. (30).

Before Eq. (21) can be used for numerical simulation it should be re-written in terms

of the working coordinates X and Y. Since 6 = 8(X) and r = v(Y) defined in Egs. (6)=(8),

_dX
d6 X

Gy

N/ Gy




G = X Cox + X1Gg
2 dY =
(JP —_':{; (JY: \’(JY

Gey = Y 2Gyy + Y"Gy

Grg = X'Y'Gyy

Similar expressions can be written for fi,. and Hy; Eq. (20) then can be put in the form

AyGyx + AyGyxy * AsGyy + AgGy + AjGy + Ag = 0 (31)
where
2 2 X2
AI = (ﬂ u ) 1‘3
XY !
Ay =— ZuvL\‘
A, = (a* = vJEY#

£X’ X £X/ 1 X
Ay = 2uv l:—r—z— - 2(r = r, cos G)T:l Cat = e 2(u? = vIr, sin 6"

A; = — duvr, sin 0 Y’ ¢ (a2 - vI)IY’” - (u2 - uﬂ)%— ¢ z(u'“’ e r, cos )Y’

A ={u® 4 vz)ki (uHxlr‘ f VY’HY) ‘ Tﬁ[-—lﬁ—fM(U“ -v9) - :.).U‘.’(t‘g = 1)}

¢ 2B,[r, sin 6(r — r, cos 6’ ~ v?) « uv(f - 21 sin’6)]

- E(Ef lu(r, cos 8 = 1) + vr, sin 8)° = a’f}

Finite-difference analogs of the potential equation are constructed following the rules
developed for the single airfoil problem. At each grid point first-order derivatives are ap-
proximated by central differences using the values of the potential from the previous sweep.

Thus

(Gy)y,y = z—ig GR4,5 = Gi-1,1)
where i and j are the indices in the X and Y directions, respectively, and the superscript
denotes “old” values. A similar expression can be written for Gv' As a result, velocities
ave frozen at values of the potential based on the previous sweep. Second-order derivative
terms are written taking into account their domain of dependence. At subscnic points cen-
tral differences are appropriate. The latest values of the potential are used with the cur-

rent column (j) being relaxed. Thus, if one denotes the difference between the new and old




values by 6Gy, then the second-order accurate difference formulas are written as

(‘xX = AX2 <(x?,1', = ‘Z(’?,j + (11..1" — il O(J"’>

Gyy = 3y? (GD, 541 — 2Gi,y + GY 4oy * 6Gy juq — 206Gy, + 6Gy, 4-y)

1

Gxy = IANAY (GRu,34 = Glat,5-1 = Gi-g,30 * Gy-1,5-1)

where w is the relaxation factor.

At supersonic points the proper domain of dependence extends upstream. Following
Jameson, Ref. 14, the second derivative terms are broken up into their streamwise and

normal components as

: 9
———‘1—“2&; Lo é— Gy = Ay + AyGiry * Ky (33

and

Gss = ByGyy + ByGyy + BsGyy

Gnn = CiGxx * CaGyy + C3Gyy
where

u“f X"
By = = A
o ks

B, = 2uvf ——
: o

Bo = vEY

"l

C \.‘.“ 2
1 r
3R
Cy = — 2uvf :
Ce = Uty

The derivatives making up the normal component, Gyy. are approximated by the central
difference formulas given above with the relaxation factor taken as one. Upwind differencing
is used in both the X and Y directions to evaluate the several parts of Ggg, the streamwise

component, Thus, for example, if u > 0 and v » 0 the contributions will be

Gyx = AX? ((-1,1 - 2Gy 441 + Gi 40 + 26Gy)

L9
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1 ) . Aoy e
Gyy = avY? (G§,5 — 2Gi, 4= + Gi, 3 + 260Gy — 26 Gy-1)

1 : 98 (3 .
ex = 2AXAY (G5 — Gi-1,3 * Gi, et * GRegyye1 + 260Gy — 6Gy-y)

Similar expressions can be written for cases where u and v take on different signs. It should
be noted that Jameson’s rules for balancing “old” and “new?” values to provide the right arti-

ficial viscosity have been followed.

In order to satisfy the boundary condition at each of the airfoil surfaces a dummy row of
points is created beyond each surface. The requirement that there be no flow through the
surface at each of the surface grid points (j = js) can then be met by requiring that the
change in potential at the dummy point equal the change at the first point off the surface,
that is, 6Gy .y = 6(},5.1. By this device @, at each surface will remain zero. At the mid-ring
boundary, which has been set up to divide the various sweep regions, the values of the po-
tential from the previous pass are kept; essentially this is a Dirichlet-type boundary condi-

tion.

By applying these finite-difference relations simultaneousiy at all grid points on «
column extending from either airfoil surface to the mid-ring, a system of linear algebraic

equations for the corrections, §G; is obtained. This system can be represented by
(Py][6Gy] = [R]
It can be easily checked that the matrix [Pu] is tridiagonal and, therefore, can be in-
verted easily. Sequentially, column by column, all points in the fields are updated, except

for the point representing infinity which is kept at its initial value.

At the end of each sweep new values of the circulation can be computed by applying Eq.
(30) at each trailing edge and solving the two resulting equations for I'y and T',. But this ex-
pression, which can be rewritten concisely as &5 = 0, was found to be the source of errors
in some cases. Because of the complicated geometries being dealt with in this problem,
large circumferential gradients of the potential could appear at one of the trailing edges.
FFor example, there could be a shock or an expansion fan, or both, very near the trailing
edge of a slat. For these cases we find the stability to be enhanced by underrelaxation of the

evaluation of the circulation constants.
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The differencing procedure described above is of a nonconservative form. Although this

method produces inaccurate shock “jump” conditions (Refs. 15, 16) generally better agree-
ment with experimental data is obtained. This is likely fortuitous. A completely satisfac-
tory solution would be obtained only with a fully conservative treatment of the inviscid equa-
tions together with a proper modeling of the viscous effects and of the shock wave-boundary

layer interaction process in particular.

To increase diagonal dominance in the tridiagonal matrix, additional artificial viscosity
can be added in the form of a term €Gg, where t is the time-like coordinate (Ref. 14). With
the basic time-like step being the iteration cycle this additional term can be represented by

_é.i(;u

\ Vo~
EGst = A6 ("Gt ¥ _(th>

rq q

For v - 0 this can be put in the form

; \ &% YT, AX X1, : ; [
€(Js' = € -'l:u + ry Z;;](‘,b’ - [1‘\- ST,_\'_;:](S(J,-I = [l] (('1'1,! = (1?_1,1)J\'

This term is added to the finite-difference analog of Eq. (21). As discussed in Ref. 14, €
should be only large enough to ensure convergence. In practice, € has been taken to be zero

in most cases.

Finally, in order to improve the computationai efficiency, the calculations are per-
formed on a sequence of two grids. The initial (coarse) grid is computed starting with an
initial representation of the reduced potential G(X,Y) given by Eq. (31). The starting con-
ditions for the second (fine) grid is obtained by a linear interpolation of the converged coarse

grid solution.




5. RESULTS

The method has been applied to a variety of two-element airfoil configurations. Figures
6, 7, 8 show the computed flow field about a NACA 23012 airfoil with a 2-H flap at M = 0.5
and an angle of attack of 5°. The calculation was performed using a series of two grids with
the final one being 60 (in the circumferential direction) by 30 (in the radial direction). The
computed pressure distributions on the main element and flap are shown in Fig. 6, and the
computed streamline patterns in the physical and annular domain are shown in Figs, 7 and 8,
Imbedded regions of supersonic flow can be seen on the latter graphs, In Fig., 6, the large,
“tic” mark on the C, axis denotes sonic pressure and the sharp nose shock computed is evi-

dent,

In this calculation the changes in the reduced potential were converged to 3 ¥ 107 on the
final grid in approximately five minutes on an IBM 370/168 computer, Some preliminary
studies have indicated that the application of the eigenvalue extrapolation method, as dis-

cussed in Ref. 8, could substantially improve convergence,

The solution for the flow over a Clark Y airfoil with a 30'¢ Maxwell slat with a gap height
of 1077 at M, = 0,6 is shown in Fig, 9. The supersonic regions in this case are considerably
larger. On the slat the entire upper surface flow is supersonic. This results in a large lift
being carried by the slat with a significant amount of “rear™ loading. The streamline and

sonic line patterns in the physical and annular domains are shown in Figs, 10 and 11,

A still larger supersonic region occurs in the next example which shows a slatted con-
figuration that is obtained from a modified NACA 64A008 section profile at M, = 0,7 and
« = 6° The computed pressure distribution and streamline contours arc shown in Figs.
12 and 13. Even though the present grid is not as dense as those used in the single-element
computations, the shock is clearly defined. It should be kept in mind that the flow on the
lower surface of the slat could separate so that some of the lift shown being carried by the
slat could be lost, A calculation for the M, - 0,5, | 4¢ flow over a slatted configuration
based on a modified NACA 64A009 airfoil is presented in Fig, 14, A plot of the Mach num-

ber contours illustrating the large regions of supersonic flow is given in Fig, 15,
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MAIN AIRFOIL

ANNULAR DOMAIN

Fig. 7 Computed Streamlines — Annular Domain NACA 23012 Airfoil/2H Flap, M. = 0.5, a = 4°

The choice of sweep directions causes no difficulties for cases where a supersonic re-
gion should span the entire gap between the two elements, This situation occurs for the
slatted NACA 0012 airfoil at M, = 0.6 and « = 4° as seen in Fig. 16. Here Mach number
contours are plotted with the sonic line being marked more heavily, The corresponding
pressures are shown in Fig. 17, The supersonic region spanning the gap is swept in the
streamline direction along both surfaces so that the proper domain of dependence is main-

tained,

A final example provides some measure of the performance of the method. Figure 18

depicts the computed pressures and experimental data for the geometry shown, The geome-
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Fig. 8 Computed Streamlines — Physical Plane NACA 23012 Airfoi!/2H Flap, M = 0.5, ac = 4

try used in the computation is the 64A406 airfoil with 7,8 A slat configuration tested, cor-
rected through the addition of a nominal displacement thickness. The overall agreement is
not very good and this implies that the boundary layer correction applied to the ordinates was
insufficient, The excellent agreement and the lower surface suggests that discrepancies on
the upper surface of the main airfoil and on the slat are due to the trailing-edge separation
on the main foil and separation on the lower surface of the slat, The disagreement between
the numerical solution and the data on the upper surface of the main element consists mainly
of an upward shift, Despite the shift all the features of the flow are predicted by the computa-
tion including the double peak occurring near the nose of the main foil, The agreementwould
undoubtedly be improved by properly accounting for viscous effects, As shown in Fig. 19,
the sonic region not only spans the entire gap but also touches the trailing edge of the slat.

With the particular differencing scheme used in the application of the Kutta conditions the

method had no difficulty computing the rapid expansion around the trailing edge of the slat.
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Fig. 10 Computed Streamlines — Annular Domain Clark Y Airfoil/30% Maxwell Slat, M. = 0.6, ¢ = 6
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Fig. 11 Computed Streamlines — Physical Plane Clark Y Airfoil/30% Maxwell Slat, M. = 0.6, a = 6
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Fig. 13 Computed Streamlines — Physical Domain Modified NACA 64A008 Airfoil/Slat, M= 0.7, a = 6
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6. CONCLUSIONS

A numerical method has been developed to calculate the inviscid transonic flow over ar-
bitrary two-element airfoil systems. Conformal mapping procedures were utilized to de-
velop a convenient computational domain where boundary conditions on the airfoil surfaces
and at infinity could be accurately prescribed and with appropriate spatial grid definition to
account for steep flow gradients. The exact irrotational flow equations were derived interms
of a smoothly varying single-valued reduced potential in the computational domain, A stable,
accurate and efficient finite-difference procedure was developed using mixed-flow relaxation
techniques. The numerical method was applied to a variety of airfoils with leading~edge
slats and trailing-edge flaps over a range of free-stream Mach numbers and angles of at-

tack.

Our computed results indicate the ability of the method to compute inviscid transonic
flows over two-element airfoil configurations, One aspect of this effort which requires fur-
ther study is the improvement of the computational efficiency. We have preliminary com-
putations with the eigenvalue extrapolation procedure of Ref. 8, which indicate a possible

40" reduction of iteration cycles. This technique will be implemented in the near future.

Another area of further study is the verification of the accuracy of our method by com-
parison with experimental data. However, it is evident that transonic two-element airfoil
flows are strongly influenced by viscous effects. Thus, we are in the process of including
boundary layer effects in our computational technique. Special emphasis will be given to in-
cluding strong viscous interaction effects at trailing edges, shock waves, and in regions of

separated flow,

We also intend to reformulate the problem in the design (inverse) mode, whereby the
pressure distribution will be prescribed over all or parts of the airfoil surfaces and the or-

dinates will evolve as part of the solution procedure. Techniques developed for single-cle-

ment design, such as Ref, 17, will be utilized.
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APPENDIX
Evaluation of the Z3~Z, Mapping Coefficients

We discuss in detail the mapping from the Z; to the Z, plane as given in Eq. (3). In or- k-

der to determine the coefficients of this mapping we consider the following preliminary map-

ping
g =f'/" (A, 1a)
1
g= i C)(l : f> (A.1b)
@ -af - 3)
. _1
f- ¥ d)(z 5> (A. 1c)

A

N

{

22
/\

N

|
Tl =
S’

where ¢ and d are the unknown coefficients.

On the unit circle zz = 1, £ may be written as

-~

£ = Z__—_u_l:]

z -0

oo}

C

so that the unit circle in the z plane maps to a slit in the f planc at an angle arg (h/a) with

—_—

-b
ping (A, 1a) we get another slit stretching from (f;)'/* to (f.)''*. Now the mapping (A. 1b)

end points at f; and f, where reaches its extreme values., Then through the map-

maps a unit circle in the ¢ plane (rz = 1) to a slit between gy and g,, Thus, if we choose ¢

and d so that

g1 - f}/x
o
g, = fi/* s

then the unit circle in the z plane will be mapped to a unit circle in the ¢ plane. To make

the slits collinear requires i

JeYy . L . (8 ; |
dlg((l) K ‘““(i.) o f

Then ¢ and d must be chosen so that g, and g, have the magnitude appropriate to Eq. (A.2).

To determine g, and g, take ¢ = 1/¢, d = 1/d and evaluate

N T SR W Sigp SIS - S S (A.4)
gd& E~c¢ ¢=-¢ -4 i =d (£=¢) (f=d) (f=c) (£=qd)
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! d R
The ends of the slitarethe branch points g; and g, where a% vanishes, Thus, at a branch
point ¢ satisfies

0=(t=-&) -de~-d) + (-c)c —d)e-d)

- A2 -BL + C (A.5a)
where
A=(+é)=-@+d) (A.5Dh)
B - 2(c¢ — dd) (A.5c)
C=cé(d+d) —ddlc +é) (A.5d)

Then if ¢, and ¢, are the roots of the branch points, g, and g, are given hy

kL ~oify — &) S (A. 6
bl (’, =4 d)(’ '_d) L

The expressions for the branch points f;, f, may be evaluated in an analagous manner, Now

from condition (A. 1la)
g8 = (£, £,)" (A.7)
Utilizing Eqgs. (A.5) we obtain ¢, &, = Q\ and {4 + &y = = and with Eq. (A.6) we can develop
Ve

(after some tedious algebra) that
c-—&>3 (lel2=1) dl?
+ o 8 = 7 5 oy A. 8
L ((l—d [(Idi'—l) c ( )
and an analagous expression for f,f, . Thus, Eq. (A.7) requires that

e~& (2= 5‘ ) (A, 9)

a=d B

Now the branch point condition Eq. (A.4) may be rewritten as

(2 = ¢ = &) (2 =d =~ 4)

0 -\ - = A, 10
€=-c)t -2 @-dE~d ( )
and the branch point g, given in Eq. (A.6) becomes
¢ + ¢ = 201
51 'l (l e _)“ (l\o 11)

However &, lies on the unit circle, and we are free to rotate the ¢ plane so that the arg (£y)
takes any desired value, Thus, if we assign a value for &y, the condition
= )" (A.12)

gives one relationship for ¢, d, ¢, d and Fq. (A, 9) gives a second; and since ¢ and d are de-

termined from ¢ and d we have two equations for ¢ and d,




These equations may be developed in a convenient form by noting that

-z —8) |z -ai’b
e e b~ e 2 .15}
while according to (A, 9) we define a quantity E as
_c—é_d—a‘/"_ﬂ( 6’_”“
S —d “(b—b> | rbt~—1)§s A
Thus
- P2 22 o 4 'l/x
1/,‘:5 Zy—a b ;>,
L e B OTER=Y
= RE, (A.15)

The two equations for ¢ and d are obtained from Eqgs. (A.9) and (A, 10) utilizing Eqs. (A, 14)

and (A. 15) as

1 1
o —= -E(d— a) (A, 16)
1
c+::D+/w‘E<d+ i) (A, 17)
c d

where D = 2¢4(1 — RE) and &, has an assigned value on the unit circle. Combining the above

two equations we obtain

)c—D+RE<d+§> : E(d—%) (A.18)

Qo

- D+ AE (d i §> ( (A.19)

We can also note that by definition

il 2 l-usale ~ 1) wras
arg\c + 7 ) =arg\c - = ) = arg(c
arg (1 +2) = arg (4 - 1) - argea
arg q) ~are\¢ it arg(d)
whereby Egs. (A, 16) and (A, 17) yield
arg(c) = arg(Ed) - arg(D) (A, 20)

Taking the complex conjugate of Eq. (A.18) and multiplying by Eq. (A.19) and simplifying

the expression using Eqg. (A, 20) gives the following

(lDI +RIE| |d 4 3 ) - llil*|d Y l =4 (A.21)
d d
1
Letting r= | E| |d + 3| Ve obtain
(ID] +pr) =r*+41E|% =1 (A, 22)
40




which may easily be solved since D and E are known. Then

1

S L

Il *+ 781 5 TEl

(=}

whereby

5

B 2
: =
21E| 41E1°

il = 1 (A.23)

where the root larger than 1 has been chosen. Also from Eq. (A.20)
arg(d) = arg(D/E) (A, 24)
and thus Egs. (A.23) and (A, 24) determine d and ¢ may then be found from Eq. (A, 16).

The mapping coefficients found completely determine the mapping given by Egs. (A.1).
This mapping differs from the one developed by Ives (Ref. 11) and given in Eq. (3) by a scale

transformation, If we define

1 1
c+:ct —d-—a
. E )-
&= 5 1 (A. 25)
a+— —h~-==
a o)

Then Egs. (A.1) are identical to Eq. (3) with
Z, = &/8
Zyr = C¢/S
Zyn = 4/S

2 4Q
PEI=I8S

and
Zy =12
Lyp =4
Zyx =D

!\’: = }\'

Thus we have reduced the determination of the mapping cocfficients of Eq. (3) to the solution
of two real quadratic equations. In Ref. 11, thesc mapping coefficients are found using a

complicated three-dimensional Newton=Rapheson iteration process.
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